
Abstract. The well-tempered model core potential
(wtMCP) parameters and valence basis sets, based on
the well-tempered basis set expansion, were developed
for the main-group elements Li–Rn. For the s–block
elements, the valence space comprises the ns valence
shell and the outermost core ðn� 1Þp shell. For the
p-block elements, the ns and np shells together with the
ðn� 1Þd shell make up the valence space. Nonrelativistic
wtMCPs were developed for all atoms. Scalar-relativistic
wtMCPs were prepared for all atoms heavier than Ar by
using the relativistic elimination of small components to
obtain the reference and core orbitals. The new poten-
tials were tested at the restricted Hartree–Fock, second-
order Møller–Plesset perturbation theory and density
functional theory with Becke’s three-parameter hybrid
functional combined with Perdew’s 1991 gradient-cor-
rected correlation functional levels for several diatomic
molecules and the results were compared with those
obtained from all-electron calculations and experimental
values. Excellent agreement between the results was
obtained.
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1 Introduction

Pseudopotential methods are popular tools in computa-
tional chemistry because they are less demanding
computationally than all-electron methods. In a pseudo-
potential method, the total number of electrons is
divided into Nc core electrons and Nv valence electrons.
Potentials are constructed which depend explicitly only
on the coordinates of the Nv valence electrons while
implicitly taking into account the influence of the

chemically inert Nc core electrons. One such pseudopo-
tential method is the model core potential (MCP)
method.

The MCP method was originally proposed by Bo-
nifacic and Huzinaga in the mid-1970s [1, 2, 3, 4, 5]. The
MCP has been implemented and successfully tested in
molecular calculations [6, 7, 8]. The foundations of the
MCP method have recently been reviewed by Huzinaga
[9, 10, 11].

The main advantage of the MCP model over other
pseudopotentials is its ability to fully represent the
correct nodal structures of the valence orbitals. This
allows for excellent description of the valence electron
distribution near the nucleus and leads to very good
values of the spin–orbit coupling constants without the
need for scaling [12, 13]. The MCP valence basis sets
and associated parameters that were published for the
main-group elements [14] and transition-metal elements
[15, 16] use a small number of primitive Gaussian-type
functions (pGTFs) in which the exponents are opti-
mized via fitting to the numerical solutions of the
atomic Hartree–Fock equations [17]. The number of
nodes that appeared in the valence orbitals depended
on the number of pGTFs used for their analytical
representation.

The present paper reports results obtained with a new
set of MCP parameters and a valence basis set that was
developed for the main-group elements Li–Rn. For al-
kali and alkaline-earth metal atoms, the valence space
comprises the ns valence shell and the outermost core
ðn� 1Þp shell. For the p-block elements, the valence
space includes the ns and np shells together with the
ðn� 1Þd shells. Instead of using numerical reference
functions, analytical reference functions expanded in
terms of very large, high quality all-electron basis sets
were used. As described in the previous paper [18], the
well-tempered basis set (WTBS) [19, 20] was chosen for
the present MCP development. To emphasize the rela-
tion to the WTBS, the new MCP parameterization was
called the well-tempered MCP (wtMCP). Scalar-rela-
tivistic wtMCPs were developed only for the elements
K–Rn, where the relativistic effects are expected to be
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significant; nonrelativistic wtMCPs were developed for
the elements from Li to Rn, to allow for studies of the
importance of the relativistic effects in molecules.

A description of both the MCP method and the
preparation of the wtMCP parameters and basis sets is
provided in Sect. 2. The quality of wtMCPs as compared
with all-electron calculations and experimental data for
several diatomic molecules, is illustrated in Sect. 3, and
concluding remarks are given in Sect. 4.

2 Determination of wtMCPs and basis sets

In the MCP formalism, the one-electron Hamiltonian
operator ĥðiÞ describes the kinetic energy of valence
electron i and the potential energy arising from the
interaction of valence electron i with an effective nuclear
charge za, plus a potential for the core electrons, V̂ a

i , and
a projection operator, P̂ a

i :

ĥðiÞ ¼ � 1

2
r2

i �
za

ria
þ V̂ a

i þ P̂ a
i : ð1Þ

V̂ a
i is the spherically-symmetric local potential

approximating the exact atomic nonlocal core potential
and is defined in terms of radial Gaussian functions,

V a
i ¼ �

za

ria

X

k

Akarnka
ia e�fkar2ia ; ð2Þ

where nka is 0 or 1, and the parameters fAka; fkag are
specific for the atom a. This potential represents the core
Coulomb and exchange potentials.

P̂ a
i is the projection operator,

P̂ a
i ¼

X

c

Ba
c /a

cðiÞih/a
cðiÞ

�� �� ; ð3Þ

which shifts the core orbitals into the virtual space and
allows for the correct representation of the nodal
structure of the valence orbitals. The shift parameter
Ba
c is defined in terms of the atomic orbital energy

eigenvalue, �c, of the core shell, c, on atom a:

Ba
c ¼ �f a

c �
a
c : ð4Þ

A fixed value of fc ¼ 2 was used in this work. The
electronic Hamiltonian for the Nv electrons can thus be
written as

Ĥvalð1; 2; . . . ;Nv; fAka; fkagÞ

¼
XNv

i¼1
ĥði; fAka; fkagÞ þ

XNv

i¼1

XNv

j>i

1

rij
; ð5Þ

where the one-electron operator depends parametrically
only on fAka; fkag and is independent of Bc. The values
of fAka; fkag for a given atom a are determined in atomic
calculations by fitting the MCP valence orbitals and
energies to the all-electron reference set.

Before optimizing the values of fAka; fkag, the atomic
reference functions for the atoms Li–Rn were prepared.
Using fully uncontracted WTBS, the generalized valence
bond calculations, with both the nonrelativistic
(Hartree–Fock) and the scalar relativistic (relativistic
elimination of small components, RESC) [21, 22]

Hamiltonians, were performed utilizing the implemen-
tation in the GAMESS-US [23, 24] computer program.
All atomic calculations were carried out for the lowest
state of the ground-state electronic configuration. These
calculations provided the necessary analytical core
functions for the projector operator in Eq. (3) and the
analytical valence reference functions that are needed for
the optimization of wtMCP parameters. In constructing
the wtMCP basis sets, the original WTBS pGTFs for the
s and p valence orbitals were used for the s-block ele-
ments. For the p-block elements, the original WTBS
pGTFs were used for the p and d valence orbitals, while
for the s orbitals a few of the pGTFs with the largest
exponents were omitted. The removal of the largest
exponents in the s space resulted in the identical number
of pGTFs used for the s and p spaces that allows for
effective folding of the long basis set expansions into L
shells of functions. Table 1 compares the number of
pGTFs used for the all-electron WTBS and wtMCP
valence basis sets.

The optimized values of the parameters fAka; fkag
were determined through a fitting procedure by mini-
mizing the deviations between the analytic reference and
MCP orbital energies and radial functions as given by
Eq. (6):

d ¼
X

j

n
w�

j �
ref
j � �MCP

j

���
���

þ wR
j

X

k

r2k Rref
j ðrkÞ � RMCP

j ðrkÞ
h i2o

; ð6Þ

where wj are weight factors, �j are orbital energies, Rj are
radial functions defined over a grid rk, and j runs over all
valence orbitals.

Excellent agreement was obtained between the refer-
ence and wtMCP orbital energies with energy differences
smaller than 1 lEh. Figures 1, 2 and 3 show the radial
functions for Xe(1S), comparing the 5s-, 5p- and 4d-type
functions between the nonrelativistic wtMCP (NR-
wtMCP) and the Hartree–Fock reference orbitals. The
radial points refer to the independent logarithmic vari-
able that expands the region near the nuclei [25]. It is
clearly seen from the figures that the correct nodal
structures are preserved. There is only a slight difference
in the inner range of the s-type function; this deviation
may be attributed to the absence of several pGTFs with

Table 1. The sizes of the primitive Gaussian-type functions for all-
electron (AE) well-tempered basis sets (WTBS) and well-tempered
model core potential (wtMCP ) valence basis sets

Atoms AE-WTBS wtMCP

Li–Be (20s) (20s)
Na–Mg (23s 13p) (23s 13p)
K–Ca (26s 16p) (26s 16p)
Rb–Sr (28s 20p 14d) (28s 20p)
Cs–Ba (30s 20p 17d) (28s 23p)
B–Ne (20s 13p) (13s 13p)
Al–Ar (23s 16p) (16s 16p)
Ga–Kr (26s 20p 14d) (20s 20p 14d)
In–Xe (28s 23p 17d) (23s 23p 17d)
Tl–Rn (28s 24p 18d) (24s 24p 18d)

34



the highest exponents in the valence basis set. The same
excellent agreement was also observed between the sca-
lar-relativistic wtMCP (SR-wtMCP) and the RESC ref-
erence functions.

The optimized wtMCP parameters for iodine are
collected in Table 2 and the corresponding basis set is
shown in Table 3. (The data for other main-group ele-
ments Li–Rn are available from the authors upon
request.)

3 Test calculations and discussion

3.1 Comparison of all-electron and wtMCP results
at the restricted Hartree-Fock level

One of the main goals of the wtMCP or any pseudo-
potential is to reduce the amount of computation time
for molecular systems without sacrificing too much of
the accuracy of the results. The wtMCP valence basis
sets and corresponding pseudopotentials must be tested
in order to assess their efficacy in reproducing the all-
electron results.

Molecular calculations were performed at the
restricted Hartree–Fock (RHF) level for homonuclear

Fig. 1. Nonrelativistic Xe(1S) 5s radial distribution function

Fig. 2. Nonrelativistic Xe(1S) 5p radial distribution function

Fig. 3. Nonrelativistic Xe(1S) 4d radial distribution function

Table 2. Parameters of the nonrelativistic (NR) wtMCP for iodine.
See Eq. (2) for the definition of the symbols

k nka Aka fka

1 0 1.660360 296.720130
2 0 0.221558 2.122267
3 0 0.049118 1.011422
4 1 21.266578 4053.042800
5 1 10.288802 36.861737
6 1 0.017616 3.479541
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diatomic molecules of representative p-block elements.
The ground electronic states of the second-row mole-
cules were used in calculating their structural parame-
ters. Similar electronic states were used for the
corresponding diatomic molecules in the group. The
pGTFs described in Table 1 were fully uncontracted and
used as basis functions for both all-electron and wtMCP
calculations. The present MCP code in GAMESS-US
allows only for the energy evaluation; hence, the equi-
librium internuclear distances, re, were obtained through
the modified Powell method of searches along conjugate
directions, while the harmonic vibrational frequencies,
�xe, were obtained by fitting (with fourth- to sixth-degree
polynomials) the total energies computed at several (5–
7) points bracketing the minimum on the potential-
energy curve.

Tables 4 and 5 show a comparison of equilibrium
geometries and vibrational frequencies between the NR-
wtMCP and the SR-wtMCP with the corresponding all-
electron nonrelativistic RHF and scalar-relativistic
RESC RHF results. The mean errors in re and �xe were
evaluated by using Eq. (7):

rðX Þ ¼
XN

i¼1

X calc
i � X ref

i

�� ��
N

; ð7Þ

where N is the number of molecules studied and
X ¼ re; �xe.

The wtMCP values showed excellent agreement with
all-electron WTBS results: rðreÞ ¼ 0:005 Å, rð�xeÞ ¼
1:0 cm�1 for nonrelativistic and rðreÞ ¼ 0:008 Å,
rð�xeÞ ¼ 0:4 cm�1 for scalar relativistic levels.

The parameters for iodine (Tables 2, 3) were used to
illustrate the reduction in computation time due to the
use of the MCPs. Using the GAMESS-US program,
Hartree–Fock energy calculations were performed for
the I2 molecule at the experimental [26] internuclear

distance of 2.666 Å. The direct self-consistent-field (SCF)
method was used, as it would be the approach applicable
in large molecular systems. The basis set of Table 3 was
used in Raffenetti’s general contraction [27] (23,1,1,1,1,
1/23,1,1,1,1,1/17), while the well-tempered basis for
iodine [20] was contracted to (28,28,28,28,28,1,1,1,1,
1/23,23,23,23,1,1,1,1,1/17,17). In both cases, the SCF
iterations converged in ten steps; the all-electron calcu-
lations took nearly 15.5 h, while the wtMCP run was
completed in less than 11min – almost 85 times faster

Table 3. NR valence basis set for iodine

i fi cs
i cp

i cd
i

1 161092.9700000 0.00005989 )0.00000055
2 59231.1270000 0.00007098 )0.00000233
3 23530.8440000 0.00037507 )0.00001075
4 9991.8892000 0.00081129 )0.00004787 )0.00000314
5 4487.6664000 0.00242272 )0.00019010 )0.00002098
6 2110.9230000 0.00507285 )0.00068804 )0.00008495
7 1030.6417000 0.01055268 )0.00197482 )0.00043744
8 518.1956500 0.01365231 )0.00598735 )0.00183141
9 266.4983600 0.00956916 )0.01018417 )0.00580880
10 139.4022900 0.00043308 )0.02118083 )0.01205981
11 73.8324560 )0.08844354 )0.02744321 )0.05594621
12 39.4525690 )0.06640292 0.01348612 )0.10699146
13 21.2112860 )0.01433314 0.04974148 )0.12190219
14 11.4509230 0.22365880 0.11307494 )0.10494222
15 6.1981301 0.31363026 0.02627737 0.10023304
16 3.3603620 )0.17996321 )0.17401213 0.34557314
17 1.8235681 )0.51037716 )0.23507663 0.38779415
18 0.9901049 )0.40548312 )0.09375228 0.24409634
19 0.5377146 0.17961764 0.19743282 0.07970811
20 0.2920600 0.53709011 0.37547326 0.01832313
21 0.1586394 0.48471485 0.37538545
22 0.0861699 0.15469738 0.20181108
23 0.0468060 0.01250074 0.05084538

Table 4. Restricted Hartree–Fock (RHF ) optimized bond lengths
(Å) of homonuclear diatomic molecules

Molecule Method

AE-NR NR-wtMCP AE-RESC SR-wtMCP

C2 1.257 1.256
Si2 2.133 2.133
Ge2 2.185 2.180 2.176 2.169
Sn2 2.576 2.568 2.548 2.542
Pb2 2.751 2.743 2.656 2.650

N2 1.084 1.082
P2 1.938 1.935
As2 2.065 2.057 2.057 2.049
Sb2 2.469 2.458 2.446 2.435
Bi2 2.660 2.651 2.576 2.568

O2 1.194 1.194
S2 2.004 2.003
Se2 2.144 2.139 2.140 2.133
Te2 2.556 2.545 2.540 2.530
Po2 2.763 2.754 2.695 2.690

F2 1.379 1.379
Cl2 2.132 2.129
Br2 2.291 2.287 2.288 2.282
I2 2.704 2.694 2.692 2.680
At2 2.922 2.914 2.862 2.855
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than the all-electron one. (Calculations were done on an
Athlon computer with 1.8-GHz clock.)

3.2 Comparison between experimental data
and wtMCP results

In the previous section, it was demonstrated that the
RHF results obtained using the wtMCP can match the
results of all-electron WTBS calculations with great
accuracy. Often, however, predicting molecular proper-
ties using an ab initio method requires the inclusion of
electron correlation. If the wtMCP method is to be used
as an alternative to the all-electron approach for
modeling real chemical systems, it is necessary to
determine how well it reproduces known experimental
data.

Results of preliminary tests with electron correlation
are reported in this section. Molecular calculations were
performed at the second-order Møller–Plesset pertur-
bation theory (MP2) and density functional theory with
Becke’s three-parameter hybrid functional combined
with Perdew’s 1991 gradient-corrected correlated func-
tional (DFT-B3P91) levels of theory for the ground
electronic state 1Rþ of group 13 halides (BF, AlCl,
GaBr, InI), group 14 sulfides AS (A ¼ C, Si, Ge, Sn) and
interhalogen diatomic compounds. RHF calculations
were also performed to serve as a reference in the ab-
sence of electron correlation. The locally modified ver-
sion of the CADPAC [28] computer package was used
for all the calculations. Analytical gradients and
numerically determined Hessians were used for obtain-
ing the optimized geometries and harmonic vibrational
frequencies, respectively.

The wtMCP basis functions given in Table 1 were
contracted in the manner shown in Table 6. A set of

double d-type polarization functions, taken from
Sadlej’s medium-sized polarized basis sets [29, 30], was
used for the elements of the first two rows of the periodic
table.

For the diatomic molecules, Tables 7, 8 and 9 show a
comparison of NR-wtMCP and SR-wtMCP results,
along with the corresponding experimental values taken
from the compilation of Huber and Herzberg [26]. The
mean errors, calculated using Eq. (7), were also evalu-
ated and are tabulated in Table 10.

The calculated bond lengths, re, at the RHF level
alone showed very close agreement with experimental
values. A noticeable improvement is seen when corre-
lated methods are used. The average errors in bond
lengths are about 0.02 Å at the MP2 level and 0.01 Å at
the DFT level using NR-wtMCP and SR-wtMCP
valence basis sets.

Table 5. RHF vibrational frequencies �xe (cm�1) for diatomic
molecules

Molecule Method

AE-NR NR-wtMCP AE-RESC SR-wtMCP

C2 1812.7 1808.7
Si2 552.6 551.0
Ge2 345.7 344.8 344.0 343.6
Sn2 227.3 226.6 225.7 225.1

N2 2563.4 2560.5
P2 797.1 795.7
As2 507.9 508.1 506.4 506.6
Sb2 326.6 326.5 325.8 325.8
Bi2 226.9 227.3 229.6 231.0

O2 1829.0 1825.2
S2 699.5 699.6
Se2 436.9 437.1 435.4 435.3
Te2 283.0 283.9 281.3 281.6
Po2 203.3 203.6 204.5 204.5

F2 1189.2 1188.5
Cl2 550.1 550.2
Br2 349.5 349.3 348.7 348.6
I2 231.9 232.5 231.3 231.5
At2 165.5 165.9 166.2 166.8

Table 6. Contractions of the atomic wtMCP basis set used in the
correlation studies. The notation 4s (8,2,1,2) denotes 4s-type basis
functions, the first of which is an eight-term contracted function,
followed by a two-term contracted function, an uncontracted
function and the last being a two-term contracted function

Atom Basis set

B–F 4s (8,2,1,2)
4p (8,2,1,2)

Al–Cl 5s (8,3,2,1,2)
5p (8,3,2,1,2)

Ga–Br 5s (12,3,2,1,2)
5p (12,3,2,1,2)
3d (10,2,2)

In–I 5s (13,5,2,1,2)
5p (13,5,2,1,2)
3d (11,4,2)

Table 7. Comparison of wtMCP and experimental bond lengths
and vibrational frequencies for group 13 halides (NR and SR
represent NR-wtMCP and SR-wtMCP, respectively)

Molecule Method re/Å �xe/cm
�1

NR SR NR SR

BF RHF 1.246 1491.7
MP2 1.267 1401.0
DFT 1.266 1346.8
EXP 1.263 1402.1

AlCl RHF 2.164 467.5
MP2 2.165 469.6
DFT 2.154 449.2
EXP 2.130 481.3

GaBr RHF 2.394 2.394 255.8 253.4
MP2 2.349 2.346 272.1 270.7
DFT 2.359 2.359 260.9 259.2
EXP 2.352 263.0

InI RHF 2.846 2.830 163.3 161.7
MP2 2.776 2.756 176.2 176.3
DFT 2.790 2.774 171.5 170.7
EXP 2.754 177.1
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For the vibrational frequencies, the RHF results are
too large by about 10–120 cm�1, using either the NR-
wtMCP or the SR-wtMCP. This reflects the fact that
RHF wavefunction usually does not dissociate to correct
atomic states, therefore leading to potential-energy
curves that are too steep near the minimum. Again, a

significant improvement is seen in results obtained with
the correlated methods, where the spread in vibrational
frequencies is relatively smaller. At the same time, it is
interesting to note that SR-wtMCP valence basis sets
show better performance than their NR-wtMCP coun-
terparts. At the MP2 level, errors in �xe ranged between 1
and 30 cm�1 using NR-wtMCP and between 1 and
10 cm�1 using the SR-wtMCP. At the DFT-B3P91 level,
the range of errors in �xe is about 2–55 and 1–10 cm�1 for
NR-wtMCP and SR-wtMCP, respectively. On average,
the MP2 results show a slightly better agreement with
experimental values than the DFT ones.

4 Conclusions

The results presented in this paper clearly show that the
wtMCP can reproduce very well both results from all-
electron calculations and experimental data. Despite
treating explicitly the valence electrons only, the new
wtMCPs have the capability of reproducing accurate
molecular geometries and vibrational frequencies.

The wtMCPs use large uncontracted valence basis
sets that are designed to be very flexible so that the levels
of contraction can be tailored to the requirements of the
computation for specific chemical application. Although
the basis set is large, the sharing of the exponents
between the s and p spaces has the computational
advantage of being conveniently folded into a contracted
L-shell basis set. Efficient routines for the evaluation of
integrals over L-shells are available in many computer
programs [23, 24, 28].

The new wtMCPs are designed for use in systems
which would be difficult or even impossible to deal with
using all-electron basis sets without sacrificing accuracy.
The preliminary results for the test molecules are
promising and encouraging. Further testing is being
done to validate the effectiveness of wtMCPs in repro-
ducing other molecular properties for polyatomic mol-
ecules.
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